Шкала геохронологическая и история развития живых организмов. Геохронологическая история земли Главные геологические события

Планеты Земля. Чтобы узнать возраст горных пород, исполь-зуют их абсолютный и относительный возраст .

Абсолютный возраст горных пород определяется по способности не-которых радиоактивных элементов к саморазложению в природных условиях. Относительный возраст определяется по условиям залега-ния осадочных горных пород, особенностям их состава, встречающим-ся останкам живших в прошлые эпохи организмов . Понятно, что более глубокие слои отражают более древние геологические события.

Изученность возраста горных пород позволила составить геохронологическую таблицу (таблицу геологического летоисчисления).

В геологической истории выделяют крупные временные отрезки — эры и периоды .

В геологическом прошлом выделяется самая древняя архейская эра , за которой следуют протерозойская , палеозойская , мезозойская , кай-нозойская . Каждая эра делится на периоды. Самый ранний из них — докембрийский .

Обратите внимание на то, что геохронологическая таблица строится от древнейших этапов к современному и читать её нужно снизу вверх. Для каждой эры показываются соответствующий ей этап развития климата, живой природы, главнейшие геологические события и наибо-лее характерные полезные ископаемые.

Геохронологическая таблица (таблица геологического летоисчисления)

Эра и её про-дол-жи-тель-ность (млн лет)

Период

Главные геологические события

Эволюция природы и органического мира

Полезные ископаемые

Начало (млн лет назад)

Продол-житель-ность (млн лет)

Эпоха склад-чатости

Изменения в облике Земли

Кайнозой (67)

(2) Четвертичный (2)

Альпийская

Общее поднятие территории, увеличение суши. Накопление снега в горах и неоднократные оледенения. Формирование современного рельефа

Появление современного человека. Появление человекоподобных пред-ков

Строительные материалы (гли-ны, песок), россыпные место-рождения золота, алмазов

(25) Неогеновый (23,5)

Мощный вулканизм, горообразование в Альпийско-Тихоокеан-ском подвижном поясе. На территории России — образование новых горных сооружений (Кавказ, Камчатка). Возникновение котловин морей — Чёрного, Каспийского, Охотского, Японского

Появление безлесных ландшафтов — степей, саванн, а также галерейных тропических лесов. Распространение копытных, грызунов. Появление новых насекомых (кузнечиков)

Бурые угли, нефть, каменная соль, осадочные руды железа, строитель-ные материалы (гранит, мрамор)

(67) Палеогеновый (42)

Разрушение мезозойских гор. Наступление морей. Накопление осадков. Начало альпийской складчатости

Господство млекопитающих. Появление саблезубых тигров и мамонтов. Распространение птиц и костных рыб

Бурые угли, нефть, горючие сланцы

Мезозой (163)

(137) Меловой (70)

Киммерийская (Мезозойская)

Образование новых горных сооружений. На территории России — горы Северо-Восточной Сибири (хребты Верхоянский, Черского) и Дальнего Востока (Сихотэ-Алинь). Поднятие платформ

В конце периода — гибель динозавров на суше, морских ящеров и ам-монитов в Океане. Возникают все группы современных млекопитаю-щих. Покрытосеменные, цветковые растения. Флора становится похо-жей на современную

Каменный уголь, нефть, горючие сланцы, фосфориты, мел, руды олова, мышьяка, сурьмы, золота, серебра, меди, свинца

(195) Юрский (58)

Затопление морями. Накопление осадков. Мощное горообразо-вание. Расколы платформ. Поднятие разрушенных гор байкаль-ской складчатости

Жаркий и влажный климат. Появление млекопитающих. Царство динозав-ров. Лесная растительность приобретает зональный характер

Каменный уголь, горючие слан-цы, фосфориты

(230) Триасовый (35)

Поднятие суши. Самое обширное отступление моря. Разрушение домезозойских гор. Формирование осадочного чехла платформ

Сухой климат. Появление динозавров (двуногих ящеров). Хвойные леса. Первые зверообразные хищники (зверозубые) — предшественники млекопитающих

Каменная соль, нефть, уголь

Палеозой

(285) Пермский (55)

Герцинская

Завершение герцинской складчатости. Образование новых горных сооружений. Поднятие древних платформ. На территории России — образование Уральских гор, Алтая. Возникновение фундаментов Западно-Сибирской и Туранской платформ, Скифской платформы

Сухой климат. Постепенное исчезновение папоротниковых и хвощевых лесов. Пресмыкающиеся становятся яйцекладущими

Каменная и калийная соли, гипс, уголь, нефть, горючий газ

(350) Каменноугольный (75-65)

Опускание суши. Затопление древних платформ. Новый этап го-рообразования. На территории России — активизация тектониче-ских движений в Урало-Тянь-Шаньском подвижном поясе. Расколы погружающейся Сибирской платформы и излияния лавы (образо-вание базальтовых покровов — сибирских траппов)

Увеличение площади заболоченных низменностей. Жаркий и влажный климат. Расцвет папоротниковых и хвощевых лесов. Появление голосе-менных хвойных растений. Расцвет земноводных. Появление насекомых (стрекоз) и пресмыкающихся (рептилий)

Обилие угля и нефти. Медные, оловянно-вольфрамовые, поли-металлические руды

(410) Девонский (60)

Каледонская

Отступание морей. Поднятия, сменившиеся к концу периоде опусканиями. Уменьшение силы тектонических движений. Разру-шение гор. Выравнивание рельефа

Усиление континентальности климата, появление первых пустынь. Древ-ние амфибии. Широкое распространение наземных растений. Выход позвоночных на сушу. Великое вторжение жизни на сушу

Нефть, горючий газ, лечебные минеральные воды

(440) Силурийский (30)

Горообразование между докембрийскими структурами. Подня-тие древних платформ. На территории России — образование Саян восточной части Алтая

Кистепёрые рыбы, костные рыбы. Хрящевые рыбы. Появление позво-ночных. Первые наземные растения-псилофиты

Железные, медные и другие ру-ды, золото, фосфориты, горю-чие сланцы

(500) Ордовикский (60) Материал с сайта

Уменьшение площади морей, вулканизм. Начало каледонской складчатости

Появление панцирных рыб

(570) Кембрийский (70)

Затухание горообразования, медленное опускание материков затопление обширных участков суши. Разрушение и сглаживание гор. Накопление осадочных пород

Кораллы, губки, моллюски, членистоногие (раки и трилобиты)

Бокситы, фосфориты, осадочные руды марганца и железа, камен-ная соль, гипс

Проте-розой

Байкальская

Мощный вулканизм, горообразование вокруг древних плат-форм. На территории России — горные системы Забайкалья, Прибайкалья, Тиманский и Енисейский кряжи

Многоклеточные существа, водоросли. Простейшие клеточные формы в глубинах бескислородного Океана

Огромные запасы железных руд, полиметаллические руды, гра-фит, строительные материалы

Архей

(более 3500) (более 900)

Древнейший вулканизм и горообразование, формирование ядер древних платформ. На территории России — Восточно-Европейская и Сибирская платформы

Первые формы жизни

На этой странице материал по темам:

1)Какое строение имеет литосфера?

Литосфера состоит из отдельных крупных блоков – литосферных плит.

2)Какие явления происходят на границах ее плит?

Границы литосферных плит могут расходиться; могут сталкиваться, тогда образуются геосинклинальные пояса.

3)Как размещаются на Земле сейсмические пояса?

Существует два крупнейших сейсмических пояса. В их число входит один широтный, то есть расположенный вдоль экватора, а второй – меридианный, соответственно, перпендикулярный предыдущему. Первый называется Средиземноморско-Трансазиатским и свое начало он берет примерно в Персидском заливе, а крайняя точка достигает середины Атлантического океана. Второй называется меридиональный Тихоокеанский, и проходит он в полном соответствии со своим именем.

Вопросы в параграфе

*Сопоставьте геологическую и тектоническую карты и определите, к каким тектоническим структурам приурочены выходы древнейших пород.

Области щитов на Русской и Сибирской платформе.

*Сопоставьте тектоническую и физико-географическую карты и определите, какие формы рельефа характерны для щитов.

Невысокие горы и плато.

Вопросы в конце параграфа

1. Какие науки занимаются изучением истории развития Земли?

Геология, геотектоника, палеонтология, минералогия, петрография.

2. Какую информацию можно получить из геохронологической таблицы?

Сведения о смене эр и периодов в истории развития Земли и их продолжительности, важнейшие геологические события, этапы развития жизни, наиболее типичные для периода полезные ископаемые.

3. Что изображено на тектонической карте?

Размещение и возраст тектонических структур.

4. С помощью геохронологической таблицы составьте рассказ о формировании основных форм рельефа нашей страны?

Крупнейшие равнинные формы рельефа приурочены древним платформам, формирование которых уже давно завершено (Русская платформа, Сибирская платформа, Западно-Сибирская плита). Горные области формировались в разные эпохи складчатости. В наиболее раннюю Байкальскую складчатость были образованы Енисейский кряж, Восточный Саян, Прибайкалье и Забайкалье. В палеозое в каледонскую складчатость формировались Западный Саян, Восточный Алтай. Урал и Западный Алтай образованы в герцинскую складчатость. Верхоянский хребет и хребет Черского, Сихоте-Алинь – мезозойская складчатость. К современной кайнозойской складчатости относятся Кавказ, горы Камчатки и Курильский остров.

5. Определите по геохронологической таблице, в какую эру и период мы живем, какие геологические события сейчас происходят, какие полезные ископаемые образуются.

Мы живем в кайнозойскую эру, четвертичный период. Сейчас происходит горообразование в альпийско-гималайском складчатом поясе, общее поднятие территории, изменения уровней морей. Наблюдается расцвет покрытосеменных и млекопитающих. Образуются полезные ископаемые – торф, россыпные месторождения золота и алмазов, строительные материалы.

Геологам приходится иметь дело с толщами горных пород, накопившимися за длительную геологическую историю планеты. Необходимо знать, какие из слагающих изучаемую территорию пород моложе, а какие древнее, в какой последовательности они формировались, к каким интервалам геологической истории относится время их образования, а также уметь сопоставлять по возрасту удалённые друг от друга толщи горных пород.

Учение о последовательности формирования и возрасте горных пород называется геохронологией. Различаются методы относительной и методы абсолютной геохронологии.

Относительная геохронология

Методы относительной геохронологии - методы определения относительного возраста горных пород, которые лишь фиксируют последовательность образования горных пород относительно друг друга.

Эти методы базируются на нескольких простых принципах. В 1669 г. Николо Стено сформулировал принцип суперпозиции, гласящий, что в ненарушенном залегании каждый вышележащий слой моложе нижележащего . Обратим внимание, что в определении подчёркивается применимость принципа только в условиях ненарушенного залегания.

Метод определения последовательности образования слоёв, базирующийся на принципе Стено, часто называют стратиграфическим. Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору.

Следующий важнейший принцип, известный как принцип пересечений , сформулирован Джеймсом Хаттоном. Этот принцип гласит, что любое тело, пересекающее толщу слоев, моложе этих слоев .

Нужно отметить и ещё один важный принцип, гласящий, что время преобразования или деформации пород моложе, чем возраст образования этих пород .

Рассмотрим использование этих принципов на примере толщ осадочных пород, прорванных несколькими секущими магматическими телами.

Последовательность событий следующая. Первоначально происходило накопление осадочных толщ нижнего слоя (1), затем, последовательно накопление вышележащих слоев (2, 3, 4, 5), каждый из которых моложе нижележащего. Накопление осадочных пород в подавляющем большинстве случаев происходит в форме горизонтально лежащих слоев, так первоначально залегали и сформированные слои (1-5). Позднее эти толщи были деформированы (6), и в них внедрилось тело магматических пород 7. Затем, вновь горизонтально, началось накопление вышележащего слоя, залегающего на и внедрившемся магматическом теле. При этом, учитывая, что образующийся слой лежит на выровненной горизонтальной поверхности, очевидно, что его накоплению предшествовало выравнивание территории – её размыв (8). Вслед за размывом территории накопился следующий слой (9). Наиболее молодым образованием является магматическое тело 10.
Подчеркнём, что, рассматривая историю геологического развития территории, разрез которой изображён на рисунке, мы пользовались исключительно относительным временем, определяя лишь последовательность образования тел.

Ещё одна большая группа методов относительной геохронологии – биостратиграфические методы . Эти методы основаны на изучении окаменелостей - ископаемых остатков организмов, заключённых в слоях горных пород: в разновозрастных слоях пород встречаются разные комплексы остатков организмов, характеризующие развитие флоры и фауны в ту или иную геологическую эпоху. В основе методов лежит принцип, сформулированный Уильямом Смитом: одновозрастные осадки содержат одни и те же или близкие остатки ископаемых организмов . Этот принцип дополняется ещё одним важным положением, гласящим, что ископаемые флоры и фауны сменяют друг друга в определённом порядке . Таким образом, в основе всех биостратиграфических методов лежит положение о непрерывности и необратимости изменения органического мира – закон эволюции Ч. Дарвина. Каждый отрезок геологического времени характеризуется определёнными представителями флоры и фауны. Определение возраста толщ горных пород сводится к сравнению найденных в них ископаемых с данными о времени существования этих организмов в геологической истории. В качестве грубой аналогии сущности метода можно привести всем известные методы определения возраста в археологии: если при раскопках обнаружены только каменные орудия труда, то культура относится к каменному веку, присутствие бронзовых орудий даёт основание для её отнесения к бронзовому веку и т.п.

Среди биостратиграфических методов долгое время оставался важнейшим метод руководящих форм. Руководящими формами называют остатки вымерших организмов соответствующие следующим критериям:

  • эти организмы существовали короткий промежуток времени,
  • были распространены на значительной территории,
  • их окаменелости части встречаются и легко определяются.

При определении возраста среди найденных в изучаемом слое ископаемых выбираются наиболее для него характерные, затем они сопоставляются с атласами руководящих форм, описывающими, какому интервалу времени свойственны те или иные формы. Первый из таких атласов был создан ещё в середине XIX века палеонтологом Г. Бронном.

На сегодняшний день основным в биостратиграфии является метод анализа органических комплексов . При применении этого метода вывод об относительном возрасте строится на сведениях обо всём комплексе окаменелостей, а не на находках единичных руководящих форм, что значительно повышает точность.

В ходе геологических исследований стоят задачи не только расчленения толщ по возрасту и отнесения их к какому-либо интервалу геологической истории, но и сопоставления – корреляции – удалённых друг от друга одновозрастных толщ. Наиболее простым методом выявления одновозрастных толщ является прослеживание слоёв на местности от одного обнажения к другому. Очевидно, что этот метод эффективен только в условиях хорошей обнажённости. Более универсальным является биостратиграфический метод сопоставления характера органических остатков в удалённых разрезах – одновозрастные слои обладают одинаковым комплексом окаменелостей. Этот метод позволяет проводить региональную и глобальную корреляцию разрезов.

Принципиальная модель использования окаменелостей для корреляции удалённых разрезов отражена на рисунке.

Одновозрастными являются слои, содержащие одинаковый комплекс окаменелостей

Абсолютная геохронология

Методы абсолютной геохронологии позволяют определить возраст геологических объектов и событий в единицах времени. Среди этих методов наиболее распространены методы изотопной геохронологии, основанные на подсчёте времени распада радиоактивных изотопов, заключенных в минералах (или, например, в остатках древесины или в окаменелых костях животных).

Сущность метода заключена в следующем. В состав некоторых минералов входят радиоактивные изотопы. С момента образования такого минерала в нём протекает процесс радиоактивного распада изотопов, сопровождающийся накоплением продуктов распада. Распад радиоактивных изотопов протекает самопроизвольно, с постоянной скоростью, не зависящей от внешних факторов; количество радиоактивных изотопов убывает в соответствии с экспоненциальным законом. Принимая во внимания постоянство скорости распада, для определения возраста достаточно установить количество оставшегося в минерале радиоактивного изотопа и количество образовавшегося при его распаде стабильного изотопа. Эта зависимость описывается главным уравнением геохронологии :

Для определения возраста используются многие радиоактивные изотопы: 238 U, 235 U, 40 K, 87 Rb, 147 Sm и др. Названия изотопно-геохронологических методов обычно образуются из названий радиоактивных изотопов и конечных продуктов их распада: уран-свинцовый, калий-аргоновый и т.д. Результаты определения возраста геологических объектов выражаются в 106 и 109 лет, или в значениях Международной системы единиц (СИ): Ma и Ga. Эта аббревиатура означает, соответственно, «млн. лет» и « млрд. лет» (от лат. Mega anna – млн. лет, Giga anna – млрд. лет ).

Рассмотрим определение возраста рубидий-стронциевым изохронным методом . В результате распада радиоактивного изотопа 87 Rb происходит образование нерадиоактивного продукта распада – 87 Sr, постоянная распада составляет 1,42*10 -11 лет -1 . Применение изохронного метода предполагает анализ нескольких образцов, взятых из одного и того же геологического объекта, что повышает точность определения возраста и позволяет рассчитать исходный изотопный состав стронция (используемый для определения условий формирования породы).

В ходе лабораторных исследований определяются содержания 87 Rb и 87 Sr, при этом содержание последнего складывается из суммы стронция, изначально содержащегося в минерале (87 Sr) 0 , и стронция, возникшего в процессе радиоактивного распада 87 Rb за период существования минерала:

На практике измеряются не содержания указанных изотопов, а их отношения к стабильному изотопу 86Sr, что даёт более точные результаты. Вследствие этого уравнение приобретает вид

В полученном уравнении имеются два неизвестных: время t и начальное отношение изотопов стронция. Для решения задачи анализируются несколько образцов, результаты наносятся в виде точек на график в координатах 87 Sr/ 86 Sr – 87 Rb/ 86 Sr. В случае корректно отобранных проб все точки ложатся вдоль одной прямой – изохроны (следовательно, имеют один и тот же возраст). Возраст анализируемых образцов рассчитывается по величине угла наклона изохроны, а начальное стронциевое отношение определяется по пересечению изохронной оси 87 Sr/ 86 Sr.

В случае если на графике точки не ложатся на одну линию можно говорить о некорректности подбора проб. Во избежание этого необходимо соблюдать следующие главные условия:

  • образцы должны отбираться из одного геологического объекта (т.е. быть заведомо одновозрастными);
  • в ии следуемых породах не должно быть признаков наложенных преобразований, которые могли привести к перераспределению изотопов;
  • образцы должны обладать одинаковым изотопным составом стронция во время возникновения (недопустимо использование различных пород при построении одной изохроны).

Не останавливаясь на методики определения возраста другими методами, отметим лишь особенности некоторых из них.

В настоящее время наиболее точным считается самарий – неодимовый метод , принятый в качестве стандарта, с которым сравниваются данные других методов. Это связано с тем, что в силу геохимических особенностей данные элементы наименее подвержены влиянию наложенных процессов, часто значительн о искажающих или сводящих на нет результаты определений возраста. Метод основан на распаде изотопа 147 Sm с образованием в качестве конечного продукта распада 144 Nd.

Калий – аргоновый метод основан на распаде радиоактивного изотопа 40 К. Этот метод давно и широко используется для определения возраста всех генетических типов горных пород. Он наиболее эффективен при определении времени формирования осадочных пород и минералов, например, глауконита. Применительно к магматическим и особенно метаморфическим породам, затронутым наложенными изменениями, этот метод часто даёт «омоложенные» датировки, что связано с потерей подвижного аргона.

Радиоуглеродный метод основан на распаде изотопа 14 С, образующегося в верхних слоях атмосферы в результате воздействия космического излучения на атмосферные газы (азот, аргон, кислород). В последствии 14 С, как и нерадиоактивный изотоп углерода, образует углекислый газ СО 2 , и в его составе вовлекается в фотосинтез, оказываясь таким образом в составе растений и, далее, пищевой цепочке передается животным. В гидросферу 14 С попадает в результате обмена СО 2 между атмосферой и Мировым океаном, далее он оказывается в костях и карбонатных раковинах водных обитателей. Интенсивное перемешивание воздушных масс в атмосфере и активное участие углерода в глобальном круговороте химических элементов приводит к выравниванию концентраций 14 С в атмосфере, гидросфере и биосфере. Для живых организмов равновесное состояние достигается при удельной активности 14 С, составляющей 13,56 ± 0.07 распадов в минуту на 1 грамм углерода. Если организм умирает, то прекращается поступление 14С; в результате радиоактивного распада (перехода в нерадиоактивный 14 N) удельная активность 14 С уменьшается. Измерив значение активности в пробе и сопоставив её со значением удельной активности в живой ткани, несложно рассчитать время прекращения жизнедеятельности организма по формуле

///////////////

Радиоуглеродного датирование позволяет определять возраст образцов, содержащих углерод (кости, зубы, раковины, древесина, уголь и т.д.) возрастом до 70 тыс. лет. Это определяет его использование в четвертичной геологии и, особенно, в археологии.

В завершение рассмотрения методов изотопной геологии следует отметить, что, несмотря на получение «абсолютных», выраженных в годах, датировок, мы имеет дело с модельным возрастом – полученные результаты неизбежно содержат некоторую ошибку и, более того, продолжительность астрономического года в ходе длительной геологической истории менялась.

Ещё одна группа методов абсолютной геохронологии представлена сезонно-климатическими методами . Примером такого метода служит варвохронология – метод абсолютной геохронологии, основанный на подсчёте годичных слоёв в «ленточных» отложениях приледниковых озёр. Для приледниковых озёр характерными отложениями служат так называемые «ленточные глины» - чётко слоистые осадки, состоящие из большого числа параллельных лент. Каждая лента – результат годичного цикла осадконакопления в условиях озёр, находящихся большую часть года в замерзшем состоянии. Она всегда состоит из двух слоёв. Верхний – зимний – слой представлен глинами темного цвета (за счёт обогащения органикой), образованного под ледяным покровом; нижний – летний – сложен более грубозернистыми светлоокрашенными осадками (в основном тонкими песками или алевро-глинистыми отложениями), образованными за счёт приносимого в озеро талыми ледниковыми водами материала. Каждая пара таких слойков соответствует 1 году.

Изучение ритмичности ленточных глин позволяет не только определять абсолютный возраст, но и проводить корреляцию расположенных неподалёку друг от друга разрезов, сопоставляя мощности слоёв.

На сходном принципе основан и подсчёт годичных слоёв в осадках соляных озёр, где летом, за счёт повышения испарения, происходит активное осаждение солей.

К недостаткам сезонно-климатических методов следует отнести их неуниверсальность.

Периодизация геологической истории. Cтратиграфическая и геохронологическая шкалы

Оперируя категорией относительного времени необходимо иметь универсальную шкалу периодизации истории. Так, применительно к истории человечества, мы употребляем выражения «до нашей эры», «в эпоху Возрождения», «в XX веке» и т.п., относя какое-либо событие или предмет материальной культуры к определённому временному интервалу. Аналогичный подход принят и в геологии, для этих целей разработаны Международная геохронологическая шкала и Международная стратиграфическая шкала.

Основную информацию о геологической истории Земли несут слои горных пород, в которых, как на страницах каменной летописи, запечатлены происходившие на планете изменения и эволюция органического мира (последняя «запечатлена» в комплексах окаменелостей, содержащихся в разновозрастных слоях). Слои горных пород, занимающие определённое положение в общей последовательности напластований и выделяемые на основании присущих им особенностей (чаще - комплекса ископаемых), являются стратиграфическими подразделениями . Горные породы, слагающие стратиграфические подразделения, формировались на протяжении определённого интервала геологического времени, и, следовательно, отражают эволюцию земной коры и органического мира за этот промежуток времени.

– шкала, показывающая последовательность и соподчинённость стратиграфических подразделений, слагающих земную кору и отражающих пройденные землёй этапы исторического развития. Объектом стратиграфической шкалы являются слои горных пород. Основа современной стратиграфической шкалы была разработана ещё в первой половине XIX века и была принята в 1881 г. на II сессии Международного геологического конгресса в Болонье. Позднее стратиграфическая шкала была дополнена геохронологической шкалой.

Геохронологическая шкала – шкала относительного геологического времени, показывающая последовательность и соподчинённость основных этапов геологической истории Земли и развития жизни на ней. Объектом геохронологической шкалы является геологическое время.

Шкала геологического времени (или геохронометрическая шкала) представляет собой последовательный ряд датировок нижних границ общих стратиграфических подразделений, выраженных в единицах времени (чаще в миллионах лет) и вычисленных с помощью методов абсолютного датирования.

Объектом геохронологической шалы служат геохронологические подразделения – интервалы геологического времени, в течение которого образовались горные породы, входящие в состав данного стратиграфического подразделения.

Всем стратиграфическим подразделениям соответствуют подразделения геохронологической шкалы.

При этом практически все стратиграфические подразделения ранга эонотема - система имеют единые общепринятые международные наименования.

Наиболее крупными стратиграфическими подразделениями являются акротемы и эонотемы. Архейскую и протерозойскую акротемы объединяют под названием «докембрий» (т. е. толщи пород, накопившиеся до кембрийского периода – первого периода фанерозоя) или «криптозой». Рубежом докембрия и фанерозоя служит появление в слоях горных пород остатков скелетных организмов. В докембрии органические остатки редки, поскольку мягкие ткани быстро разрушаются, не успев захорониться. Сам термин «криптозой» образовано при слиянии корней слов «криптос» - скрытый и «зоэ» - жизнь . При расчленении докембрийских толщ на дробные стратиграфические подразделения важнейшую роль имеют методы изотопной геохронологии, поскольку органические остатки редки или вообще отсутствуют, определяются с трудом и, главное, не подвержены быстрой эволюции (однотипные комплексы микрофауны остаются неизменными на протяжении огромных интервалов времени, что не позволяет расчленять толщи по этому признаку).

Эонотемы включают в свой состав эратемы. Эратема , или группа - отложени, образовавшиеся в течение эры ; продолжительность эр в фанерозое составляет первые сотни миллионов лет. Эратемы отражают крупные этапы развития Земли и органического мира. Границы между эратемами соответствуют переломным рубежам в истории развития органического мира. В фанерозое выделяют три эратемы: палеозойскую, мезозойскую и кайнозойскую.

Эратемы, в свою очередь, включают в свой состав системы. Система – это отложения, образовавшиеся в течение периода ; длительность периодов составляет десятки миллионов лет. Одна система от другой отличается комплексами фауны и флоры на уровне надсемейств, семейств и родов. В фанерозое выделяются 12 систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная (карбоновая), пермская, триасовая, юрская, меловая, палеогеновая, неогеновая и четвертичная (антропогеновая). Названия большинства систем происходят от географических названий тех местностей, где они были впервые установлены. Для каждой системы на геологических картах приняты определенный цвет, являющийся международным, и индекс, образованный начальной буквой латинского названия системы.

Отдел - часть системы, соответствующая отложениям, образовавшимся в течение одной эпохи ; длительность эпох обычно составляет первые десятки миллионов лет. Отличия между отделами проявляются в различии фауны и флоры на уровне родов или групп. Названия отделов даны по положению их в системе: нижний, средний, верхний или только нижний и верхний; эпохи соответственно называют ранней, средней, поздней.

В составе отдела выделяются ярусы. Ярус - отложения, образовавшиеся в в течение века ; продолжительность веков составляет несколько миллионов лет.

Наряду с основными подразделениями стратиграфической и геохронологической шкал применяются региональные и местные подразделения.

К региональным стратиграфическим подразделениям относятся горизонт и лона.

Горизонт - основное региональное подразделение стратиграфической шкалы, объединяющее одновозрастные отложения, характеризующиеся определенным комплексом литологических и палеонтологических признаков. Горизонтам присваиваются географические названия, соответствующие местам, где они наиболее хорошо представлены и изучены. Геохронологическим эквивалентом служит время . Например, хапровский горизонт, распространённый на побережье Таганрогского залива Азовского моря, соответствует толще речных песков, сформировавшихся в конце неогенового периода. Стратотип (наиболее представительный разрез стратиграфического горизонта, являющийся его эталоном) этого горизонта расположен у ст. Хапры. Добавим, что термин «горизонт», употребляемый без географического названия, понимается как слой или пачка слоёв, выделяемых на основании каких-либо особенностей (палеонтологических или литологических), то есть является обозначением свободного пользования.

Лона является частью горизонта выделяемой по комплексу фауны и флоры, характерному для данного региона, и отражает определенную фазу развития органического мира данного региона. Название лоны даётся по виду-индексу. Геохронологическим эквивалентом лоны является время.

Местные стратиграфические подразделения представляют собой толщи пород, выделяемые по ряду признаков, в основном по литологическому или петрографическому составу.

Комплекс - самое крупное местное стратиграфическое подразделение. Комплекс имеет очень большую мощность, сложный состав горных пород, сформированных в течение какого-то крупного этапа развития территории. Комплексу присваивается географическое название по характерному месту его развития. Чаще всего комплексы выделяются при расчленении метаморфических толщ.

Серия охватывает достаточно мощную и сложную по составу толщу горных пород для которых имеются какие-то общие признаки: сходные условия образования, преобладание определенных типов горных пород, близкая степень деформаций и метаморфизма и т.д. Серии обычно соответствуют единому крупному циклу развития территории.

Основной единицей из местных стратиграфических подразделений представляет собой является свита. Свита представляет собой толщу пород, образованных в определенной физико-географической обстановке и занимающих установленное стратиграфическое положение в разрезе. Главные особенности свиты - наличие устойчивых литологических признаков на всей площади ее распространения и четкая выраженность границ. Свое название свита получает по географическому местонахождению стратотипа.

Границы местных стратиграфических подразделений часто не совпадают с границами подразделений единой стратиграфической шкалы.

В процессе работы геологом часто приходится использовать также вспомогательные стратиграфические подразделения - толща, пачка, слой, залежь, и т. д., называемые обычно по характерным породам, цвету, литологическим особенностям или по характерным органическим остаткам (толща известняков, слои с Matra fabriana и т.п.).

  • Какое строение имеет литосфера?
  • Какие явления происходят на границах ее плит?
  • Как размещаются на Земле сейсмические пояса?

Строение земной коры . Наиболее крупные черты рельефа страны определяются особенностями геологического строения и тектонических структур. Территория России, как и всей Евразии, сформировалась в результате постепенного сближения и столкновения отдельных крупных литосферных плит и их осколков.

Строение литосферных плит неоднородно. В их пределах есть относительно устойчивые участки - платформы и подвижные складчатые пояса. От строения литосферных плит зависит размещение крупнейших форм рельефа суши - равнин и гор. Равнины расположены на платформах.

Тектонические структуры и время их образования показаны на тектонических картах, без которых невозможно объяснить закономерности размещения основных форм рельефа.

В подвижных складчатых поясах образовались горы. Эти пояса возникали в разное время в краевых частях литосферных плит при их столкновении друг с другом. Иногда складчатые пояса находятся во внутренних частях литосферной плиты. Таков, например, Уральский хребет. Это говорит о том, что когда-то здесь проходила граница двух плит, которые позже превратились в единую, более крупную плиту.

Геологическая история Земли начинается со времени образования земной коры. Самые древние горные породы свидетельствуют о том, что возраст литосферы более 3,5 млрд лет.

Промежуток времени, отвечающий наиболее продолжительному (длительному) этапу развития земной коры и органического мира, принято называть геологической эрой. Вся история Земли поделена на пять эр: архейскую (древнейшую), протерозойскую (эру ранней жизни), палеозойскую (эру древней жизни), мезозойскую (эру средней жизни), кайнозойскую (эру новой жизни). Эры подразделяются на геологические периоды. Названия периодов чаще всего происходят от местностей, где впервые были найдены соответствующие отложения.

Геологическое летосчисление, или геохронология, - раздел геологии, занимающийся изучением возраста, продолжительности и последовательности формирования горных пород, слагающих земную кору.

Науки, изучающие земную кору

Разнообразие современного рельефа - результат длительного геологического развития и воздействия современных рельефообразующих факторов, включая и деятельность человека. Геология занимается изучением строения и истории развития Земли. Современная геология делится на ряд отраслей: историческая геология изучает закономерности строения земной коры в течение геологического времени; геотектоника - это учение о строении земной коры и формировании тектонических структур (складки, трещины, сдвиги, сбросы и т. д.). Палеонтология - наука о вымерших (ископаемых) организмах и о развитии органического мира Земли. Минералогия и петрография изучают минералы и другие природные химические соединения. Если залегание горных пород не нарушено смятием, складками, разрывами, то каждый слой моложе того, на котором он залегает, а самый верхний слой образовался позднее всех.

Кроме того, определять относительный возраст горных пород можно по остаткам вымерших организмов.

Определять абсолютный возраст горных пород достаточно точно научились лишь в XX в. Для этих целей используют процесс распада радиоактивных элементов, содержащихся в породе.

Геохронологическая таблица содержит сведения о последовательной смене эр и периодов в развитии Земли и их продолжительности. Иногда в таблице указывают важнейшие геологические события, этапы развития жизни, а также наиболее типичные для данного периода полезные ископаемые и т. п.

Таблица построена от древнейших этапов развития Земли к современному, поэтому изучать ее нужно снизу вверх. С помощью геохронологической таблицы можно получить сведения о продолжительности и геологических событиях в разные эры и периоды развития Земли.

Геологические карты содержат подробную информацию о том, какие горные породы встречаются в тех или иных районах земного шара, какие полезные ископаемые залегают в их недрах и т. д.

Рис. 15. Геологическое летосчисление. История развития Земли

Геологическая карта позволит вам получить представление о распространении горных пород различного возраста по территории России. Обратите внимание, что самые древние породы выходят на поверхность в Карелии и Забайкалье.

В курсе географии материков и океанов вы уже познакомились с картой строения земной поверхности, то есть с тектонической картой. Изучая тектоническую карту России, вы сможете получить подробную информацию о размещении и возрасте различных тектонических структур в пределах нашей страны.

Рис. 16. Тектонические структуры мира

Сопоставьте геологическую и тектоническую карты и определите, к каким тектоническим структурам приурочены выходы древнейших пород.

Анализ тектонической карты России позволяет сделать следующие выводы.

Области с равнинным рельефом приурочены к платформам - устойчивым участкам земной коры, где складкообразователь-ные процессы уже давно закончились. Наиболее древние из платформ - Восточно-Европейская и Сибирская. В основании платформ лежит жесткий фундамент, сложенный магматическими и сильно метаморфизированными породами докембрийского возраста (гранитами, гнейсами, кварцитами, кристаллическими сланцами). Фундамент обычно покрыт чехлом горизонтально залегающих осадочных пород, и только на Сибирской платформе (Среднесибирское плоскогорье) значительные площади заняты вулканическими породами - сибирскими траппами.

По карте (рис. 16) определите, в пределах каких литосферных плит расположена территория России.

Выходы фундамента, сложенного кристаллическими породами, на поверхность называются щитами. В нашей стране известны Балтийский щит на Русской платформе и Алданский щит на Сибирской платформе.

Сопоставьте тектоническую и физико-географическую карты и определите, какие формы рельефа характерны для щитов.

Рис. 17. Строение платформы

Горные области отличаются более сложным геологическим строением. Горы образуются в наиболее подвижных участках земной коры, где в результате тектонических процессов горные породы сминаются в складки, разбиваются разломами и сбросами. Эти тектонические структуры возникли в различное время - в эпохи палеозойской, мезозойской и кайнозойской складчатости. Самые молодые горы нашей страны расположены на Дальнем Востоке, а именно на Курильских островах и Камчатке. Они входят в состав обширного Тихоокеанского вулканического пояса, или Тихоокеанского огненного кольца, как его называют. Они отличаются значительной сейсмичностью, частыми сильными землетрясениями, наличием действующих вулканов.

Рис. 18. Строение складчатой области

Информация геологических и тектонических карт необходима не только геологам и географам, но и строителям, а также представителям других профессий.

Таблица 2. Главные действующие вулканы России

Для успешной работы с этими достаточно сложными картами надо прежде всего внимательно изучить их легенды.

Вопросы и задания

  1. Какие науки занимаются изучением истории развития Земли?
  2. Какую информацию можно получить из геохронологической таблицы?
  3. Что изображено на тектонической карте?
  4. С помощью геохронологической таблицы составьте рассказ о формировании основных форм поверхности нашей страны.
  5. Определите по геохронологической таблице, в какую эру и период мы живем; какие геологические события сейчас происходят; какие полезные ископаемые образуются.

Похожие статьи