Значение биохимии. Что такое БиоХимия? Изучение биохимии

Биохимический анализ крови – один из наиболее популярных методов исследования для пациентов и врачей. Если четко знать, что показывает биохимический анализ из вены, можно на ранних стадиях выявлять ряд серьезных недугов, среди которых – вирусный гепатит , . Раннее выявление таких патологий дает возможность применить правильное лечение и излечить их.

Кровь на исследование медсестра набирает на протяжении нескольких минут. Каждый пациент должен понимать, что неприятных ощущений эта процедура не вызывает. Ответ на вопрос, откуда берут кровь для анализа, однозначен: из вены.

Говоря о том, что такое биохимический анализ крови и что входит в него, следует учесть, что полученные результаты фактически являются своеобразным отображением общего состояния организма. Тем не менее, пытаясь самостоятельно понять, нормальный анализ или есть определенные отклонения от нормального значения, важно понимать, что такое ЛПНП, что такое КФК (КФК - креатинфосфокиназа), понимать, что такое urea (мочевина) и др.

Общие сведения о том, анализ биохимии крови - что это такое и что можно узнать, проведя его, вы получите из этой статьи. Сколько стоит проведение такого анализа, сколько дней нужно, чтобы получить результаты, следует узнавать непосредственно в лаборатории, где пациент намеревается провести это исследование.

Как происходит подготовка к биохимическому анализу?

Перед тем, как сдавать кровь, нужно тщательно подготовиться к этому процессу. Тем, кто интересуется, как правильно сдать анализ, нужно учесть несколько достаточно простых требований:

  • сдавать кровь нужно только натощак;
  • вечером, накануне предстоящего анализа, нельзя пить крепкий кофе, чай, потреблять жирную еду, алкогольные напитки (последние лучше не пить на протяжении 2-3 дней);
  • нельзя курить, по крайней мере, в течение часа до анализа;
  • за сутки до сдачи анализов не стоит практиковать любые тепловые процедуры – ходить в сауну, баню, также человек не должен подвергать себя серьезным физическим нагрузкам;
  • сдать лабораторные анализы нужно утром, перед проведением любых медицинских процедур;
  • человек, который готовится к анализам, придя в лабораторию, должен немного успокоиться, несколько минут посидеть и отдышаться;
  • негативным является ответ на вопрос, можно ли чистить зубы перед сдачей анализов: чтобы точно определить сахар в крови, утром перед проведением исследования нужно проигнорировать эту гигиеническую процедуру, а также не пить чай и кофе;
  • не следует перед забором крови принимать , гормональные лекарства, мочегонные средства и др.;
  • за две недели до исследования нужно прекратить прием средств, которые влияют на липиды в крови, в частности, статины ;
  • если нужно сдать полный анализ повторно, это нужно делать в одно и то же время, лаборатория тоже должна быть той же самой.

Если был проведен клинический анализ крови, расшифровка показателей проводится специалистом. Также интерпретация показателей биохимического анализа крови может проводиться с помощью специальной таблицы, в которой указаны нормальные показатели анализов у взрослых и у детей. Если какой-либо показатель отличается от нормы, важно обратить на это внимание и проконсультироваться с врачом, который может правильно «прочитать» все полученные результаты и дать свои рекомендации. При необходимости назначается биохимия крови: расширенный профиль.

Таблица расшифровки биохимического анализа крови у взрослых

Показатель в исследовании Норма
Белок общий 63-87 г/л

Фракции белка:альбумины

глобулины (α1, α2, γ, β)

Креатинин 44-97 мкмоль на л – у женщин, 62-124 – у мужчин
Мочевина 2,5-8,3 ммоль/л
Мочевая кислота 0,12-0,43 ммоль/л — у мужчин, 0,24-0,54 ммоль/л — у женщин.
Холестерин общий 3,3-5, 8 ммоль/л
ЛПНП менее 3 ммоль на л
ЛПВП выше или равно 1,2 ммоль на л — у женщин, 1 ммоль на л – у мужчин
Глюкоза 3,5-6,2 ммоль на л
Билирубин общий 8,49-20,58 мкмоль/л
Билирубин прямой 2,2-5,1 мкмоль/л
Триглицериды менее 1,7 ммоль на л
Аспартатаминотрансфераза (сокращенно АСТ) аланинаминотрансфераза — норма у женщин и мужчин — до 42 Ед/л
Аланинаминотрансфераза (сокращенно АЛТ) до 38 Ед/л
Гамма-глутамилтрансфераза (сокращенно ГГТ) нормальные показатели ГГТ — до 33,5 Ед/л — у мужчин, до 48,6 Ед/л – у женщин.
Креатинкиназа (сокращенно КК) до 180 Ед/л
Щелочная фосфатаза (сокращенно ЩФ) до 260 Ед/л
Α-амилаза до 110 Е на литр
Калий 3,35-5,35 ммоль/л
Натрий 130-155 ммоль/л

Таким образом, биохимическое исследование крови дает возможность провести развернутый анализ для оценки работы внутренних органов. Также расшифровка результатов позволяет адекватно «читать», какие именно , макро- и микроэлементы, нужны организму. Биохимия крови позволяет распознать наличие патологий .

Если правильно расшифровать полученные показатели, намного проще поставить любой диагноз. Биохимия – это более подробное исследование, чем ОАК. Ведь расшифровка показателей общего анализа крови не позволяет получить столь подробных данных.

Очень важно проводить такие исследования при . Ведь общий анализ при беременности не дает возможности получить полной информации. Поэтому биохимию у беременных назначают, как правило, в первые месяцы и в третьем триместре. При наличии определенных патологий и плохого самочувствия этот анализ проводят чаще.

В современных лабораториях способны провести исследование и расшифровать полученные показатели на протяжении нескольких часов. Пациенту предоставляется таблица, в которой указаны все данные. Соответственно, есть возможность даже самостоятельно отследить, насколько показатели крови в норме у взрослых и у детей.

Как таблица расшифровки общего анализа крови у взрослых, так и биохимические анализы расшифровываются с учетом возраста и пола пациента. Ведь норма биохимии крови, как и норма клинического анализа крови, может варьироваться у женщин и мужчин, у молодых и пожилых пациентов.

Гемограмма – это клинический анализ крови у взрослых и детей, который позволяет узнать количество всех элементов крови, а также их морфологические особенности, соотношение , содержание и др.

Так как биохимия крови – это комплексное исследование, она включает также печеночные пробы. Расшифровка анализа позволяет определить, в норме ли функция печени. Печеночные показатели важны для диагностики патологий этого органа. Оценить структурное и функциональное состояние печени дают возможность следующие данные: показатель АЛТ, ГГТП (ГГТП норма у женщин немного ниже), щелочной фосфатазы, уровень и общего белка. Печеночные пробы проводятся при необходимости установить или подтвердить диагноз.

Холинэстераза определяется с целью диагностики выраженности и состояния печени, а также ее функций.

Сахар в крови определяется с целью оценки функций эндокринной системы. Как называется анализ крови на сахар, можно узнать непосредственно в лаборатории. Обозначение сахара можно найти в бланке с результатами. Как обозначается сахар? Он обозначается понятием «глюкоза» или «GLU» на английском.

Важна норма CRP , так как скачок этих показателей свидетельствует о развитии воспаления. Показатель АСТ свидетельствует о патологических процессах, связанных с разрушением тканей.

Показатель MID в анализе крови определяют при проведении общего анализа. Уровень MID позволяет определить развитие , инфекционных болезней, анемии и др. Показатель MID позволяет оценить состояние иммунной системы человека.

МСНС – это показатель средней концентрации в . Если МСНС повышен, причины этого связаны с недостатком или , а также врожденного сфероцитоза.

MPV - среднее значение объема измеренных .

Липидограмма предусматривает определение показателей общего , ЛПВП, ЛПНП, триглицеридов. Липидный спектр определяют с целью выявления нарушений липидного обмена в организме.

Норма электролитов крови свидетельствует о нормальном течении обменных процессов в организме.

Серомукоид – это фракция белков , которая включает группу гликопротеинов. Говоря о том, серомукоид - что это такое, следует учесть, что если разрушается, деградирует или повреждается соединительная ткань, серомукоиды поступают в плазму крови. Поэтому серомукоиды определяют с целью прогноза развития .

ЛДГ, LDH (лактатдегидрогеназа) – это , принимающий участие в окислении глюкозы и продукции молочной кислоты.

Исследование на остеокальцин проводят для диагностики .

Анализ на ферритин (белковый комплекс, основное внутриклеточное депо железа) проводят при подозрении на гемохроматоз, хронические воспалительные и инфекционные болезни, опухоли.

Анализ крови на ASO важен для проведения диагностики разновидности осложнений после перенесенной стрептококковой инфекции.

Кроме того, определяются и другие показатели, а также проводятся другие следования (электрофорез белков и др.). Норма биохимического анализа крови отображается в специальных таблицах. В ней отображена норма биохимического анализа крови у женщин, таблица также дает информацию о нормальных показателях у мужчин. Но все же о том, как расшифровать общий анализ крови и как прочитать данные биохимического анализа, лучше спрашивать у специалиста, который адекватно оценит результаты в комплексе и назначит соответствующее лечение.

Расшифровка биохимии крови у детей проводится специалистом, который назначил исследования. Для этого также используется таблица, в которой обозначена норма у детей всех показателей.

В ветеринарии также существуют нормы биохимических показателей крови для собаки, кошки – в соответствующих таблицах указан биохимический состав крови животных.

Что значат в анализе крови некоторые показатели, подробнее рассматривается ниже.

Белок очень много значит в организме человека, так как он принимает участие в творении новых клеток, в транспорте веществ и формировании гуморального .

В состав протеинов входит 20 основных , также в их составе содержатся неорганические вещества, витамины, остатки липидов и углеводов.

В жидкой части крови содержится примерно 165 белков, причем, их строение и роль в организме разные. Протеины делятся на три разные белковые фракции:

  • глобулины (α1, α2, β, γ);
  • фибриноген .

Так как выработка протеинов происходит в основном в печени, их уровень свидетельствует о ее синтетической функции.

Если проведенная протеинограмма свидетельствует, что в организме отмечается снижение показателей общего белка, это явление определяется как гипопротеинемия. Подобное явление отмечается в следующих случаях:

  • при белковом голодании – если человек соблюдает определенную , практикует вегетарианство;
  • если отмечается повышенное выведение белка с мочой – при , болезнях почек, ;
  • если человек теряет много крови – при кровотечениях, обильных месячных;
  • в случае серьезных ожогов;
  • при экссудативном плеврите, экссудативном перикардите, асците;
  • при развитии злокачественных новообразований;
  • если нарушено образование белка – при , гепатите;
  • при снижении всасывания веществ – при , колите, энтерите и др.;
  • после продолжительного приема глюкокортикостероидов.

Повышенный уровень белка в организме – это гиперпротеинемия . Различается абсолютная и относительная гиперпротеинемия.

Относительный рост протеинов развивается в случае потери жидкой части плазмы. Это происходит, если беспокоит постоянная рвота, при холере.

Абсолютное увеличение белка отмечается, если имеют место воспалительные процессы, миеломная болезнь.

Концентрации этого вещества на 10% изменяются при изменении положения тела, а также во время физических нагрузок.

Почему изменяются концентрации фракций белка?

Белковые фракции – глобулины, альбумины, фибриноген.

Стандартный биоанализ крови не предполагает определения фибриногена, который отображает процесс свертывания крови. Коагулограмма – анализ, в котором определяют этот показатель.

Когда повышен уровень фракций белка?

Уровень альбуминов:

  • если происходит потеря жидкости во время инфекционных заболеваний;
  • при ожогах.

Α-глобулины:

  • при системных болезнях соединительной ткани ( , );
  • при гнойных воспалениях в острой форме;
  • при ожогах в период восстановления;
  • нефротический синдром у больных гломерулонефритом.

Β- глобулины:

  • при гиперлипопротеинемии у людей с сахарным диабетом, ;
  • при кровоточащей язве в желудке или кишечнике;
  • при нефротическом синдроме;
  • при .

Гамма-глобулины повышены в крови:

  • при вирусных и бактериальных инфекциях;
  • при системных болезнях соединительной ткани (артрит ревматоидный, дерматомиозит, склеродермия);
  • при аллергии;
  • при ожогах;
  • при глистной инвазии.

Когда понижен уровень фракций белка?

  • у новорожденных детей вследствие недоразвитости печеночных клеток;
  • при легких;
  • при беременности;
  • при заболеваниях печени;
  • при кровотечениях;
  • в случае накопления плазмы в полостях организма;
  • при злокачественных опухолях.

В организме происходит не только строительство клеток. Они также распадаются, и при этом накапливаются азотистые основания. Формирование их происходит в печени человека, выводятся они через почки. Следовательно, если показатели азотистого обмена повышены, то вероятно нарушение функций печени или почек, а также избыточный распад белков. Основные показатели азотистого обмена – креатинин , мочевина . Реже определяется аммиак, креатин, остаточный азот, мочевая кислота.

Мочевина (urea)

  • гломерулонефриты, острые и хронические;
  • нефросклероз;
  • отравление разными веществами - дихлорэтаном, этиленгликолем, солями ртути;
  • артериальная гипертензия;
  • краш-синдром;
  • поликистоз или почек;

Причины, вызывающие понижение:

  • увеличенное выделение мочи;
  • введение глюкозы;
  • печеночная недостаточность;
  • снижение обменных процессов;
  • голодание;
  • гипотиреоз.

Креатинин

Причины, вызывающие повышение:

  • почечная недостаточность в острой и хронической формах;
  • декомпенсированный ;
  • акромегалия;
  • непроходимость кишечника;
  • дистрофия мышц;
  • ожоги.

Мочевая кислота

Причины, вызывающие повышение:

  • лейкозы;
  • дефицит витамина В-12;
  • инфекционные болезни острого характера;
  • болезнь Вакеза;
  • заболевания печени;
  • сахарный диабет в тяжелой форме;
  • патологии кожных покровов;
  • отравление угарным газом, барбитуратами.

Глюкоза

Глюкоза считается основным показателем обмена углеводов. Она является основным энергетическим продуктом, который поступает в клетку, так как жизнедеятельность клетки зависит именно от кислорода и глюкозы. После того, как человек принял пищу, глюкоза попадает в печень, а там происходит ее утилизация в виде гликогена . Контролируют эти процессы поджелудочной – и глюкагон . Вследствие недостатка глюкозы в крови развивается гипогликемия, ее избыток говорит о том, что имеет место гипергликемия.

Нарушение концентрации глюкозы в крови происходит в следующих случаях:

Гипогликемия

  • при продолжительном голодании;
  • в случае нарушения всасывания углеводов – при , энтерите и др.;
  • при гипотиреозе;
  • при хронических патологиях печени;
  • при недостаточности коры надпочечников в хронической форме;
  • при гипопитуитаризме;
  • в случае передозировки инсулином или гипогликемическими лекарствами, которые принимают перорально;
  • при , инсуломе, менингоэнцефалите, .

Гипергликемия

  • при сахарном диабете первого и второго типов;
  • при тиреотоксикозе;
  • в случае развития опухоли ;
  • при развитии новообразований коры надпочечников;
  • при феохромоцитоме;
  • у людей, которые практикуют лечение глюкокортикоидами;
  • при ;
  • при травмах и опухолях мозга;
  • при психоэмоциональном возбуждении;
  • если произошло отравление угарным газом.

Специфические окрашенные белки – это пептиды, в составе которых есть металл (медь, железо). Это миоглобин, гемоглобин, цитохром, церуллоплазмин и др. Билирубин – это конечный продукт распада таких белков. Когда завершается существование эритроцита в селезенке, за счет биливердинредуктазы вырабатывается билирубин, который называется непрямой или свободный. Этот билирубин токсичен, поэтому для организма он вреден. Однако так как происходит его быстрая связь с альбуминами крови, то отравление организма не происходит.

В то же время у людей, которые страдают циррозом, гепатитом, в организме связи с глюкуроновой кислотой не происходит, поэтому анализ показывает высокий уровень билирубина. Далее происходит связывание непрямого билирубина с глюкуроновой кислотой в клетках печени, и он превращается в связанный или прямой билирубин (DBil), не являющийся токсичным. Высокий уровень его отмечается при синдроме Жильбера , дискинезиях желчевыводящих путей . Если проводятся печеночные пробы, расшифровка их может демонстрировать высокий уровень прямого билирубина, если повреждены печеночные клетки.

Ревмопробы

Ревмопробы – комплексный иммунохимический анализ крови, в который входит исследование на определение ревматоидного фактора, анализ на циркулирующие иммунные комплексы, определение антител к о-стрептолизину. Ревмопробы могут проводиться самостоятельно, а также как часть исследований, которые предусматривает иммунохимия. Ревмопробы следует проводить, если есть жалобы на боли в суставах.

Выводы

Таким образом, общетерапевтический развернутый биохимический анализ крови – очень важное исследование в процессе диагностики. Тем, кто хочет провести в поликлинике или в лаборатории полный расширенный БХ анализ крови или ОАК, важно учесть, что в каждой лаборатории используют определенный набор реактивов, анализаторы и другие аппараты. Следовательно, нормы показателей смогут различаться, что нужно учитывать, изучая, что показывает клинический анализ крови или результаты биохимии. Перед тем, как читать результаты, важно убедиться, что в бланке, который выдают в медучреждении, обозначены нормативы, чтобы расшифровать результаты пробы правильно. Норма ОАК у детей также обозначена в бланках, но оценивать полученные результаты должен врач.

Многие интересуются: анализ крови форма 50 - что это и зачем его сдавать? Это анализ на определение антител, которые есть в организме, если он заражен . Анализ ф50 делается как при подозрении на ВИЧ, так и с целью профилактики у здорового человека. К такому исследованию также стоит правильно подготовиться.

Животных, растений, грибов, вирусов, бактерий. Численность представителей каждого царства настолько велика, что остается только удивляться, как мы все помещаемся на Земле. Но, несмотря на такое многообразие, все живое на планете объединяет несколько основных особенностей.

Общность всего живого

Доказательства складываются из нескольких основных особенностей живых организмов:

  • необходимости в питании (потреблении энергии и преобразовании ее внутри организма);
  • потребности в дыхании ;
  • способности к размножению;
  • росте и развитии в течение жизненного цикла.

Любой из перечисленных процессов представлен в организме массой химических реакций. Ежесекундно внутри любого живого существа, а тем более человека, происходят сотни реакций синтеза и распада органических молекул. Структура, особенности химического воздействия, взаимодействие друг с другом, синтез, распад и построение новых структур молекул органического и неорганического строения - все это предмет изучения большой, интересной и разнообразной науки. Биохимия - это молодая прогрессивная область знания, изучающая все происходящие внутри живых существ.

Объект

Объектом изучения биохимии являются только живые организмы и все происходящие в них процессы жизнедеятельности. А конкретно - химические реакции, происходящие при поглощении пищи, выделении продуктов жизнедеятельности, росте и развитии. Так, основы биохимии составляет изучение:

  1. Неклеточных форм жизни - вирусов.
  2. Прокариотических клеток бактерий.
  3. Высших и низших растений.
  4. Животных всех известных классов.
  5. Организма человека.

При этом сама биохимия - это наука достаточно молодая, возникшая только с накоплением достаточного количества знаний о внутренних процессах в живых существах. Ее возникновение и обособление датируется второй половиной XIX века.

Современные разделы биохимии

На современном этапе развития биохимия включает в себя несколько основных разделов, которые представлены в таблице.

Раздел

Определение

Объект изучения

Динамическая биохимия

Изучает химические реакции, лежащие в основе взаимопревращения молекул внутри организма

Метаболиты - простые молекулы и их производные, образующиеся в результате обмена энергии; моносахариды, жирные кислоты, нуклеотиды, аминокислоты

Статическая биохимия

Изучает химический состав внутри организмов и структуру молекул

Витамины, белки, углеводы, нуклеиновые кислоты, аминокислоты, нуклеотиды, липиды, гормоны

Биоэнергетика

Занимается изучением поглощения, накопления и преобразования энергии в живых биологических системах

Один из разделов динамической биохимии

Функциональная биохимия

Изучает подробности всех физиологических процессов организма

Питание и пищеварение, кислотно-щелочного баланса, мышечные сокращения, проведение нервного импульса, регуляция печени и почек, действие иммунной и лимфатической систем и так далее

Медицинская биохимия (биохимия человека)

Изучает процессы метаболизма в организме людей (в здоровых организмах и при заболеваниях)

Эксперименты на животных позволяют вывести патогенных бактерий, вызывающих заболевания у людей, и найти способы борьбы с ними

Таким образом, можно сказать, что биохимия - это целый комплекс маленьких наук, которые охватывают все многообразие сложнейших внутренних процессов живых систем.

Дочерние науки

С течением времени накопилось настолько много различных знаний и сформировалось столько научных навыков обработки результатов исследований, выведения бактериальных колоний, и РНК, встраивания заведомо известных участков генома с заданными свойствами и так далее, что появилась необходимость в дополнительных науках, которые являются дочерними для биохимии. Это такие науки, как:

  • молекулярная биология;
  • генная инженерия;
  • генная хирургия;
  • молекулярная генетика;
  • энзимология;
  • иммунология;
  • молекулярная биофизика.

Каждая из перечисленных областей знаний имеет массу достижений в изучении биопроцессов в живых биологических системах, поэтому является очень важной. Все они относятся к наукам XX века.

Причины интенсивного развития биохимии и дочерних наук

В 1958 г. Корана открыл ген и его структуру, после чего в 1961 г. был расшифрован генетический код. Затем было установлено строение молекулы ДНК - двухцепочечная структура, способная к редупликации (самовоспроизведению). Были описаны все тонкости процессов метаболизма (анаболизм и катаболизм), изучена третичная и четвертичная структура белковой молекулы. И это далеко не полный список грандиозных по значимости открытий XX века, которые и составляют основу биохимии. Все эти открытия принадлежат биохимикам и самой науке как таковой. Поэтому предпосылок для ее развития множество. Можно выделить несколько современных причин ее динамичности и интенсивности в становлении.

  1. Выявлены основы большинства химических процессов, происходящих в живых организмах.
  2. Сформулирован принцип единства в большинстве физиологических и энергетических процессов для всех живых существ (например, они одинаковы у бактерий и человека).
  3. Медицинская биохимия позволяет получить ключ к лечению массы различных сложных и опасных заболеваний.
  4. При помощи биохимии стало возможным подобраться к решению самых глобальных вопросов биологии и медицины.

Отсюда вывод: биохимия - это прогрессивная, важная и очень широко спектральная наука, позволяющая найти ответы на многие вопросы человечества.

Биохимия в России

В нашей стране биохимия является такой же прогрессивной и важной наукой, как и в целом мире. На территории России действуют Институт биохимии им. А. Н. Баха РАН, Институт биохимии и физиологии микроорганизмов им. Г. К. Скрябина РАН, НИИ биохимии СО РАН. Нашим ученым принадлежит большая роль и множество заслуг в истории развития науки. Так, например, был открыт метод иммуноэлектрофареза, механизмы гликолиза, сформулирован принцип комплементарности нуклеотидов в структуре молекулы ДНК и сделан ряд других важных открытий. В конце XIX и начале XX в. в основном были сформированы не целые институты, а кафедра биохимии в некоторых из вузов. Однако вскоре появилась необходимость расширить пространство для изучения данной науки в связи с ее интенсивным развитием.

Биохимические процессы растений

Биохимия растений неразрывно связана с физиологическими процессами. В целом, предметом изучения биохимии и физиологии растений является:

  • жизнедеятельность растительной клетки;
  • фотосинтез;
  • дыхание;
  • водный режим растений;
  • минеральное питание;
  • качество урожая и физиология его формирования;
  • устойчивость растений к вредителям и неблагоприятным условиям окружающей среды.

Значение для сельского хозяйства

Знание глубинных процессов биохимии в растительных клетках и тканях позволяют повышать качество и количество урожая культурных сельскохозяйственных растений, являющихся массовыми производителями важных продуктов питания для всего человечества. Кроме того, физиология и биохимия растений позволяют находить пути решения проблем заражения вредителями, устойчивости растений к неблагоприятным условиям среды, дают возможность повысить качество продукции растениеводства.

Биохимия – это целая наука которая изучает, во-первых, химический состав клеток и организмов, а во-вторых, химические процессы, которые лежат в основе их жизнедеятельности. Термин был введён в научную среду в 1903 году химиком из Германии по имени Карл Нойберг.

Однако сами процессы биохимии были известны ещё с давних времён. И на основе этих процессов люди пекли хлеб и варили сыр, делали вино и выделывали кожи животных, лечили болезни при помощи трав, а потом и лекарственных средств. И в основе всего этого лежат именно биохимические процессы.

Так, например, не зная ничего о самой науке, арабский учёный и врач Авиценна, который жил в 10 веке, описал многие лекарственные вещества и их влияние на организм. А Леонардо да Винчи сделал вывод – живой организм способен жить только в той атмосфере, в которой способно гореть пламя.

Как и любая другая наука, биохимия применяет свои собственные методы исследования и изучения. И самые важные из них – это хроматография, центрифугирование и электрофорез.

Биохимия сегодня- это наука, которая сделала большой скачок в своём развитии. Так, например, стало известно, что из всех химических элементов на земле в теле человека присутствует чуть больше четверти. И большинство редких элементов, кроме йода и селена, совершенно не нужны человеку для того, чтобы поддерживать жизнь. А вот такие два распространённых элемента, как алюминий и титан в организме человека пока найдены не были. Да и найти их просто невозможно – для жизни они не нужны. И среди всех них только 6 – это те, что необходимы человеку ежедневно и именно из них состоит наш организм на 99%. Это углерод, водород, азот, кислород, кальций и фосфор.

Биохимия – это наука, которая изучает такие важные составляющие продуктов, как белки, жиры, углеводы и нуклеиновые кислоты. Сегодня об этих веществах мы знаем практически всё.

Некоторые путают две науки – биохимию и органическую химию. Но биохимия – это наука, которая изучает биологические процессы, которые протекают только в живом организме. А вот органическая химия – это наука, которая изучает те или иные соединения углерода, а это и спирты, и эфиры, и альдегиды и многие-многие другие соединения.

Биохимия – это ещё и наука, в состав которой входит цитология, то есть изучение живой клетки, её строение, функционирование, размножение, старение и смерть. Нередко этот раздел биохимии называют молекулярной биологией.

Однако молекулярная биология, как правило, работает с нуклеиновыми кислотами, а вот биохимикам больше интересны белки и ферменты, которые запускают те или иные биохимические реакции.

Сегодня биохимия всё чаще и чаще применяет разработки генной инженерии и биотехнологий. Однако сами по себе – это тоже разные науки, которые изучают каждый своё. Например, биотехнология изучает методы клонирования клеток, а генная инженерия пытается найти способы того, как заменить больной ген в организме человека на здоровый и тем самым избежать развития многих наследственных заболеваний.

И все эти науки тесно связаны между собой, что помогает им развиваться и работать на благо человечества.

БИОХИМИЯ (биологическая химия), наука, изучающая химический состав живых объектов, строение и пути превращения природных соединений в клетках, органах, тканях и целых организмах, а также физиологическую роль отдельных химических превращений и закономерности их регулирования. Термин «биохимия» введён немецким учёным К. Нейбергом в 1903 году. Предмет, задачи и методы исследования биохимии относятся к изучению всех проявлений жизни на молекулярном уровне; в системе естественных наук она занимает самостоятельную область, относящуюся в равной степени как к биологии, так и к химии. Биохимию традиционно подразделяют на статическую, занимающуюся анализом строения и свойств всех органических и неорганических соединений, входящих в состав живых объектов (клеточных органелл, клеток, тканей, органов); динамическую, изучающую всю совокупность превращений отдельных соединений (обмен веществ и энергии); функциональную, исследующую физиологическую роль молекул отдельных соединений и их превращений при определённых проявлениях жизнедеятельности, а также сравнительную и эволюционную биохимию, определяющую сходство и различия состава и обмена веществ у организмов, принадлежащих к разным таксономическим группам. В зависимости от объекта исследования выделяют биохимию человека, растений, животных, микроорганизмов, крови, мышц, нейрохимию и пр., а по мере углубления знаний и их специализации самостоятельными разделами становятся энзимология, изучающая строение и механизм действия ферментов, биохимия углеводов, липидов, нуклеиновых кислот, мембран. Исходя из целей и задач, биохимию часто делят на медицинскую, сельскохозяйственную, техническую, биохимию питания и пр.

Формирование биохимии в 16—19 веках. Становление биохимии как самостоятельной науки тесно связано с развитием других естественнонаучных дисциплин (химия, физика) и медицины. Существенный вклад в развитие химии и медицины в 16 - 1-й половине 17 века внесла ятрохимия. Её представители исследовали пищеварительные соки, жёлчь, процессы брожения и др., ставились вопросы о превращениях веществ в живых организмах. Парацелъс пришёл к выводу, что процессы, происходящие в организме человека, являются химическими процессами. Я. Сильвиус большое значение придавал правильному соотношению в организме человека кислот и щелочей, нарушение которого, как он полагал, лежит в основе многих заболеваний. Я. Б. ван Гельмонт пытался установить, за счёт чего создаётся вещество растений. В начале 17 века итальянский учёный С. Санторио с помощью специально сконструированной им камеры пытался установить соотношение количества принимаемой пищи и выделений человека.

Научные основы биохимии были заложены во 2-й половине 18 века, чему способствовали открытия в области химии и физики (в том числе открытие и описание ряда химических элементов и простых соединений, формулировка газовых законов, открытие законов сохранения и превращения энергии), использование химических методов анализа в физиологии. В 1770-х годах А. Лавуазье сформулировал идею о сходстве процессов горения и дыхания; установил, что дыхание человека и животных с химической точки зрения представляет собой процесс окисления. Дж. Пристли (1772) доказал, что растения выделяют кислород, необходимый для жизни животных, а голландский ботаник Я. Ингенхауз (1779) установил, что очищение «испорченного» воздуха производится только зелёными частями растений и только на свету (этими работами было положено начало изучению фотосинтеза). Л. Спалланцани предложил рассматривать пищеварение как сложную цепь химических превращений. К началу 19 века из природных источников был выделен ряд органических веществ (мочевина, глицерин, лимонная, яблочная, молочная и мочевая кислоты, глюкоза и др.). В 1828 году Ф. Вёлер впервые осуществил химический синтез мочевины из цианата аммония, развенчав тем самым господствовавшее до этого времени представление о возможности синтеза органических соединений только живыми организмами и доказав несостоятельность витализма. В 1835 году И. Берцелиус ввёл понятие катализа; он постулировал, что брожение - каталитический процесс. В 1836 году голландский химик Г. Я. Мульдер впервые предложил теорию строения белковых веществ. Постепенно происходило накопление данных о химическом составе растительных и животных организмов и протекающих в них химических реакциях, к середине 19 века описан ряд ферментов (амилаза, пепсин, трипсин и др.). Во 2-й половине 19 века были получены некоторые сведения о структуре и химических превращениях белков, жиров и углеводов, фотосинтезе. В 1850-55 годах К. Бернар выделил гликоген из печени и установил факт его превращения в глюкозу, поступающую в кровь. Работами И. Ф. Мишера (1868) было положено начало изучению нуклеиновых кислот. В 1870 году Ю. Либих сформулировал химическую природу действия ферментов (основные её принципы сохраняют своё значение и в наши дни); в 1894 году Э. Г. Фишер впервые использовал ферменты в качестве биокатализаторов химических реакций; он пришёл к заключению, что субстрат соответствует ферменту как «ключ замку». Л. Пастер сделал вывод о том, что брожение - биологический процесс, для осуществления которого необходимы живые дрожжевые клетки, отвергнув тем самым химическую теорию брожения (Й. Берцелиус, Э. Митчерлих, Ю. Либих), в соответствии с которой сбраживание сахаров - сложная химическая реакция. Ясность в этот вопрос была окончательно внесена после того, как Э. Бухнер (1897, совместно с братом, Г. Бухнером) доказал способность экстракта клеток микроорганизмов вызывать брожение. Их работы способствовали познанию природы и механизма действия ферментов. Вскоре А. Гарден установил, что брожение сопровождается включением фосфата в соединения углеводов, что послужило толчком к выделению и идентификации фосфорных эфиров углеводов и пониманию их ключевой роли в биохимических превращениях.

Развитие биохимии в России в этот период связано с именами А. Я. Данилевского (изучал белки и ферменты), М. В. Ненцкого (исследовал пути образования мочевины в печени, структуру хлорофилла и гемоглобина), В. С. Гулевича (биохимия мышечной ткани, экстрактивные вещества мышц), С. Н. Виноградского (открыл хемосинтез у бактерий), М. С. Цвета (создал метод хроматографического анализа), А. И. Баха (перекисная теория биологического окисления) и др. Российский врач Н. И. Лунин проложил путь к изучению витаминов, экспериментально доказав (1880) необходимость для нормального развития животных особых веществ (помимо белков, углеводов, жиров, солей и воды). В конце 19 века сформировались представления о сходстве основных принципов и механизмов химических превращений у различных групп организмов, а также об особенностях их обмена веществ (метаболизма).

Накопление большого количества сведений относительно химического состава растительного и животных организмов и протекающих в них химических процессов привело к необходимости систематизации и обобщения данных. Первой работой в этом направлении стал учебник И. Зимона («Handbuch der angewandten medicinischen Chemie», 1842). В 1842 году появилась монография Ю. Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». Первый отечественный учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодические издания регулярно начали выходить с 1873 года. Во 2-й половине 19 века на медицинских факультетах многих российских и зарубежных университетов были организованы специальные кафедры (первоначально их называли кафедрами медицинской или функциональной химии). В России впервые кафедры медицинской химии были созданы А. Я. Данилевским в Казанском университете (1863) и А. Д. Булыгинским (1864) на медицинском факультете Московского университета.

Биохимия в 20 веке . Становление современной биохимии произошло в 1-й половине 20 века. Его начало отмечено открытием витаминов и гормонов, определена их роль в организме. В 1902 году Э. Г. Фишер первым синтезировал пептиды, установив тем самым природу химической связи между аминокислотами в белках. В 1912 году польский биохимик К. Функ выделил вещество, предотвращающее развитие полиневрита, и назвал его витамином. После этого постепенно были открыты многие витамины, и витаминология стала одним из разделов биохимии, а также науки о питании. В 1913 году Л. Михаэлисом и М. Ментен (Германия) были разработаны теоретические основы ферментативных реакций, сформулированы количественные закономерности биологического катализа; установлена структура хлорофилла (Р. Вильштеттер, А. Штоль, Германия). В начале 1920-х годов А. И. Опарин сформулировал общий подход к химическому пониманию проблемы возникновения жизни. Впервые были получены в кристаллическом виде ферменты уреаза (Дж. Самнер, 1926), химотрипсин, пепсин и трипсин (Дж. Нортроп, 1930-е годы), что послужило доказательством белковой природы ферментов и толчком для быстрого развития энзимологии. В эти же годы Х. А. Кребс описал механизм синтеза мочевины у позвоночных в ходе орнитинового цикла (1932); А. Е. Браунштейн (1937, совместно с М. Г. Крицман) открыл реакцию переаминирования как промежуточное звено биосинтеза и распада аминокислот; О. Г. Варбург выяснил природу фермента, реагирующего с кислородом в тканях. В 1930-х годах завершился основной этап изучения природы основополагающих биохимических процессов. Установлена последовательность реакций распада углеводов в ходе гликолиза и брожения (О. Мейергоф, Я. О. Парнас), превращения пировиноградной кислоты в циклах ди- и трикарбоновых кислот (А. Сент-Дъёрдъи, Х. А. Кребс, 1937), открыто фоторазложение воды (Р. Хилл, Великобритания, 1937). Работами В. И. Палладина, А. Н. Баха, Г. Виланда, шведского биохимика Т. Тунберга, О. Г. Варбурга и английского биохимика Д. Кейлина заложены основы современных представлений о внутриклеточном дыхании. Из мышечных экстрактов были выделены аденозинтрифосфат (АТФ) и креатинфосфат. В СССР работами В. А. Энгельгардта (1930) и В. А. Белицера (1939) по окислительному фосфорилированию и количественной характеристике этого процесса было положено начало современной биоэнергетике. Позднее Ф. Липман разработал представления о богатых энергией фосфорных соединениях, установил центральную роль АТФ в биоэнергетике клетки. Открытие ДНК у растений (российские биохимики А. Н. Белозерский и А. Р. Кизель, 1936) способствовало признанию биохимического единства растительного и животного мира. В 1948 году А. А. Красновский открыл реакцию обратимого фотохимического восстановления хлорофилла, значительные успехи были достигнуты в выяснении механизма фотосинтеза (М. Калвин).

Дальнейшее развитие биохимии связано с изучением структуры и функции ряда белков, разработкой основных положений теории ферментативного катализа, установлением принципиальных схем обмена веществ и др. Прогресс биохимии во 2-й половине 20 века в значительной степени обусловлен развитием новых методов. Благодаря усовершенствованию методов хроматографии и электрофореза стала возможной расшифровка последовательностей аминокислот в белках и нуклеотидов в нуклеиновых кислотах. Рентгеноструктурный анализ позволил определить пространственную структуру молекул ряда белков, ДНК и других соединений. С помощью электронной микроскопии были открыты ранее неизвестные клеточные структуры, благодаря ультрацентрифугированию выделены различные клеточные органеллы (в том числе ядро, митохондрии, рибосомы); использование изотопных методов дало возможность понять сложнейшие пути превращения веществ в организмах и т. д. Важное место в биохимических исследованиях заняли различные виды радио- и оптической спектроскопии, масс-спектроскопии. Л. Полинг (1951, совместно с Р. Кори) сформулировал представления о вторичной структуре белка, Ф. Сенгер расшифровал (1953) структуру белкового гормона инсулина, а Дж. Кендрю (1960) определил пространственную структуру молекулы миоглобина. Благодаря усовершенствованию методов исследования было внесено много нового в представления о структуре ферментов, формировании их активного центра, об их работе в составе сложных комплексов. После установления роли ДНК как вещества наследственности (О. Эвери, 1944) особое внимание обращается на нуклеиновые кислоты и их участие в процессе передачи признаков организма по наследству. В 1953 году Дж. Уотсон и Ф. Крик предложили модель пространственной структуры ДНК (так называемая двойная спираль), увязав её строение с биологической функцией. Это событие явилось переломным моментом в развитии биохимии и биологии в целом и послужило основанием для выделения из биохимии новой науки - молекулярной биологии. Исследования по структуре нуклеиновых кислот, их роли в биосинтезе белка и явлениях наследственности связаны также с именами Э. Чаргаффа, А. Корнберга, С. Очоа, Х. Г. Корана, Ф. Сенгера, Ф. Жакоба и Ж. Моно, а также российских учёных А. Н. Белозерского, А. А. Баева, Р. Б. Хесина-Лурье и др. Изучение структуры биополимеров, анализ действия биологически активных низкомолекулярных природных соединений (витамины, гормоны, алкалоиды, антибиотики и др.) привели к необходимости установления связи между строением вещества и его биологической функцией. В связи с этим получили развитие исследования на грани биологической и органической химии. Это направление стало называться биоорганической химией. В 1950-х годах на стыке биохимии и неорганической химии как самостоятельная дисциплина сформировалась бионеорганическая химия.

К числу несомненных успехов биохимии относятся: открытие участия биологических мембран в генерации энергии и последующие исследования в области биоэнергетики; установление путей превращения наиболее важных продуктов обмена веществ; познание механизмов передачи нервного возбуждения, биохимических основ высшей нервной деятельности; выяснение механизмов передачи генетической информации, регуляции важнейших биохимических процессов в живых организмах (клеточная и межклеточная сигнализация) и многие другие.

Современное развитие биохимии. Биохимия является неотъемлемой частью физико-химической биологии - комплекса взаимосвязанных и тесно переплетённых между собой наук, который включает также биофизику, биоорганическую химию, молекулярную и клеточную биологию и др., изучающих физические и химические основы живой материи. Биохимические исследования охватывают широкий круг проблем, решение которых осуществляется на стыке нескольких наук. Например, биохимическая генетика изучает вещества и процессы, участвующие в реализации генетической информации, а также роль различных генов в регуляции биохимических процессов в норме и при различных генетических нарушениях метаболизма. Биохимическая фармакология исследует молекулярные механизмы действия лекарственных средств, способствуя разработке более совершенных и безопасных препаратов, иммунохимия - структуру, свойства и взаимодействия антител (иммуноглобулинов) и антигенов. На современном этапе биохимия характеризуется активным привлечением широкого методического арсенала смежных дисциплин. Даже такой традиционный раздел биохимии, как энзимология, при характеристике биологической роли конкретного фермента, редко обходится без направленного мутагенеза, выключения гена, кодирующего исследуемый фермент в живых организмах, или, наоборот, его повышенной экспрессии.

Хотя основные пути и общие принципы обмена веществ и энергии в живых системах можно считать установленными, множество деталей метаболизма и особенно его регуляции остаются неизвестными. Особенно актуально выяснение причин нарушений метаболизма, приводящих к тяжёлым «биохимическим» болезням (различные формы диабета, атеросклероз, злокачественное перерождение клеток, нейродегенеративные заболевания, циррозы и многие др.), и научное обоснование его направленной коррекции (создание лекарственных средств, диетические рекомендации). Использование биохимических методов позволяет выявить важные биологические маркеры различных заболеваний и предложить эффективные способы их диагностики и лечения. Так, определение в крови кардиоспецифичных белков и ферментов (тропонин Т и изофермент креатинкиназы миокарда) позволяет осуществлять раннюю диагностику инфаркта миокарда. Важная роль отводится биохимии питания, изучающей химические и биохимические компоненты пищи, их ценность и значение для здоровья человека, влияние хранения пищевых продуктов и их обработки на качество пищи. Системный подход в изучении всей совокупности биологических макромолекул и низкомолекулярных метаболитов конкретной клетки, ткани, органа или организма определённого вида привёл к появлению новых дисциплин. К их числу относятся геномика (исследует всю совокупность генов организмов и особенности их экспрессии), транскриптомика (устанавливает количественный и качественный состав молекул РНК), протеомика (анализирует всё многообразие белковых молекул, характерных для организма) и метаболомика (изучает все метаболиты организма или его отдельных клеток и органов, образующиеся в процессе жизнедеятельности), активно использующие биохимическую стратегию и биохимические методы исследований. Получила развитие прикладная область геномики и протеомики - биоинженерия, связанная с направленным конструированием генов и белков. Названные выше направления порождены в равной мере биохимией, молекулярной биологией, генетикой и биоорганической химией.

Научные учреждения, общества и периодические издания . Научные исследования в области биохимии проводятся во многих специализированных научно-исследовательских институтах и лабораториях. В России они находятся в системе РАН (в том числе Институт биохимии, Институт эволюционной физиологии и биохимии, Институт физиологии растений, Институт биохимии и физиологии микроорганизмов, Сибирский институт физиологии и биохимии растений, Институт молекулярной биологии, Институт биоорганической химии), отраслевых академий (в том числе Институт биомедхимии РАМН), ряда министерств. Работы по биохимии ведутся в лабораториях и на многочисленных кафедрах биохимических вузов. Специалистов-биохимиков и за рубежом, и в Российской Федерации готовят на химических и биологических факультетах университетов, имеющих специальные кафедры; биохимиков более узкого профиля - в медицинских, технологических, сельскохозяйственных и других вузах.

В большинстве стран существуют научные биохимические общества, объединённые в Европейскую федерацию биохимиков (Federation of European Biochemical Societies, FEBS) и в Международный союз биохимиков и молекулярных биологов (International Union of Biochemistry, IUBMB). Эти организации собирают симпозиумы, конференции, а также конгрессы. В России Всесоюзное биохимическое общество с многочисленными республиканскими и городскими отделениями было создано в 1959 году (с 2002 года Общество биохимиков и молекулярных биологов).

Велико количество периодических изданий, в которых публикуются работы по биохимии. Наиболее известны: «Journal of Biological Chemistry» (Balt., 1905), «Biochemistry» (Wash., 1964), «Biochemical Journal» (L., 1906), «Phytochemistry» (Oxf.; N. Y., 1962), «Biochimica et Biophisica Acta» (Amst., 1947) и многие др.; ежегодники: «Annual Review of Biochemistry» (Stanford, 1932), «Advances in Enzymology and Related Subjects of Biochemistry» (N. Y., 1945), «Advances in Protein Chemistry» (N.Y., 1945), «Febs Journal» (первоначально «European Journal of Biochemistry», Oxf., 1967), «Febs letters» (Amst., 1968), «Nucleic Acids Research» (Oxf., 1974), «Biochimie» (Р., 1914; Amst., 1986), «Trends in Biochemical Sciences» (Elsevier, 1976) и др. В России результаты экспериментальных исследований печатаются в журналах «Биохимия» (М., 1936), «Физиология растений» (М., 1954), «Журнал эволюционной биохимии и физиологии» (СПб., 1965), «Прикладная биохимия и микробиология» (М., 1965), «Биологические мембраны» (М., 1984), «Нейрохимия» (М., 1982) и др., обзорные работы по биохимии - в журналах «Успехи современной биологии» (М., 1932), «Успехи химии» (М., 1932) и др.; ежегодник «Успехи биологической химии» (М., 1950).

Лит.: Джуа М. История химии. М., 1975; Шамин А. М. История химии белка. М., 1977; он же. История биологической химии. М., 1994; Основы биохимии: В 3 т. М., 1981; Страйер Л. Биохимия: В 3 т. М., 1984-1985; Ленинджер А. Основы биохимии: В 3 т. М., 1985; Азимов А. Краткая история биологии. М., 2002; Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М., 2002; Berg J.М., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. N. Y., 2002; Биохимия человека: В 2 т. 2-е изд. М., 2004; Березов Т. Т., Коровкин Б. Ф. Биологическая химия. 3-е изд. М., 2004; Voet D., VoetJ. Biochemistry. 3rd ed. N. Y., 2004; Nelson D. L., Cox М. М. Lehninger principles of biochemistry. 4th ed. N. Y., 2005; Elliott W., Elliott D. Biochemistry and molecular biology. 3rd ed. Oxf., 2005; Garrett R.Н., Grisham С. М. Biochemistry. 3rd ed. Belmont, 2005.

А. Д. Виноградов, А. Е. Медведев.

Биологическая химия - одна из фундаментальных теоретических наук, которая изучает состав, структуру и свойства химических соединений, формирующих живые системы, а так­же их взаимодействие и взаимопревращение в процессе метаболизма.

Биохимия - изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Принципиальное значение для развития биохимии имел первый синтез природного вещества - мочевины (Ф. Велер, 1828), подорвавший представления о "жизненной силе", участвующей якобы в синтезе различных веществ организмом. Используя достижения общей, аналитической и органической химии, биохимия в XIX в. сформировалась в самостоятельную науку.

Биохимия – это наука, занимающаяся изучением различных молекул, химических реакций и процессов, протекающих в живых клетках и организмах.

Биохимия, как следует из названия (от греческого bios – жизнь), - это химия жизни, или, более строго, наука о химических основах процессов жизнедеятельности.

Первоначально вопросы биохимии изучались с разных сторон органической химией и физиологией.

Исторические предпосылки развития биохимии.

В общенаучном варианте биохимия появилась в глубокой древности (Авиценна, Гиппократ).

XVI-XVII вв. – воззрения алхимиков получили дальнейшее развитие в трудах ятрохимиков (от греч. iatros –врач). Т. Парацельс выдвинул весьма прогрессивное положение о тесной связи химии с медициной.

Витализм – учение о животной силе, в основе которого лежит тезис “живое качественно отличается от неживого”.

XVII-XVIII вв. – открытие закона сохранения материи, фотосинтеза; появились данные, доказывающие единство живого и неживого мира. Выделили мочевину, органические кислоты, спирты, холестерин из живого – окончательное опровержение витализма.

втор. пол. XVIII в. Спалланцани – исследования физиологии пищеварения – начало изучения ферментов пищеварительных соков.

1814 – К.С. Кирхгоф описал ферментативный процесс осахаривания крахмала под влиянием вытяжки из проросших семян ячменя.

1828 – Ф. Вёлер осуществил синтез мочевины в лабораторных условиях, доказав единство живой и неживой природы (материи).

1828 – год рождения биохимии.

1839 – Ю. Либих выяснил, что в состав пищи входят белки, жиры и углеводы.

1842 – первый учебник биохимии И. Зимона.

1845 – А. Кольбе – синтезировал уксусную кислоту.

1847 – учебник биохимии Ю. Либиха; учебник физиологической химии А.И. Ходнева.

сер. XIX в. найдены ферменты: амилаза слюны, пепсин желудочного сока, трипсин сока поджелудочной железы; Й. Берцелиус ввёл в химию понятие о катализе и катализаторах.

1854 – М. Бертло – синтезировал жиры.

1861 – А.М. Бутлеров – синтезировал углеводы.

1863 – в Казанском (организатор кафедры А.Я. Данилевский) и Московском (организатор – А.Д. Булыгинский) университетах преподают биохимию как науку.

1869 – открытие ДНК (Миллер).

Л. Пастер – изучение брожения.

1871 – М.М. Манассеина и Э. Бухнер (1897) доказали способность бесклеточного дрожжевого сока вызывать алкогольное брожение.

1880 – витамины (Лунин).

1892 – начала функционировать кафедра физиологической химии в Военно-медицинской (Медико-хирургической) академии в Петербурге (А.Я. Данилевский возглавлял кафедру).

XX в. – расцвет биохимии. Синтез пептидов (Фишер). Изучены углеводный, белковый и липидный обмены (основы биохимии). Открыта молекула АТФ. Выделены ферменты (энзимология). Дробление биохимии.

1931 – Энгельгардт – изучение процесса окислительного фосфорилирования (развитие биоэнергетики).

1953 – Уотсон и Крик – изучение вторичной структуры ДНК (развитие молекулярной биологии, в 70-е гг. на её основе развитие генной инженерии).

Современная биохимия как самостоятельная наука сложилась на рубеже XIX и XX веков.

к. XX – н. XXI – современный этап биохимии.

Причины выделения биохимии как самостоятельной науки:

    успехи в изучении природных соединений;

    потребности практики медицины;

    широкое использование современных методик биохимического анализа.

8.2. Что изучает биохимия и что является предметом исследований, направления исследований.

В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и микроорганизмов. Несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия, прежде всего в характере обмена веществ. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счёт химической энергии, освобождающейся при распаде или окислении сложных органических соединений. Растения, не использующие для своей жизнедеятельности вещества органической природы, называются аутотрофными организмами, животные же являются гетеротрофными организмами. Среди микроорганизмов встречаются как аутотрофный, так и гетеротрофный типы обмена веществ. Кроме того, микроорганизмы характеризуются наличием химических веществ и реакций, не встречающихся у животных и растений.

Области исследования

Биохимия занимается изучением химических реакций, протекающих в микроорганизмах, растениях, насекомых, рыбах, птицах, низших и высших млекопитающих, и в частности человека. Для студентов, изучающих биомедицинские науки, особый интерес представляют два последних раздела.

Главные направления развития исследований в области биологической химии (горизонты биохимии) на ближайшую и отдалённую перспективу.

    Дифференцировка клеток высших организмов (эукариот).

    Организация и механизм функционирования генома.

    Регуляция действия ферментов и теория энзиматического катализа.

    Процессы узнавания на молекулярном уровне.

    Молекулярные основы соматических и наследственных заболеваний человека.

    Молекулярные основы злокачественного роста.

    Молекулярные основы иммунитета.

    Рациональное питание.

    Молекулярные механизмы памяти.

    Биосинтез белка

    Биологические мембраны и биоэнергетика.

Основное назначение биохимии сводится к тому, чтобы решать на молекулярном уровне задачи фундаментальные, общебиологические, включая проблему зависимости человека от экосистемы, которую необходимо не только понять, но и защищать и научиться разумно ею пользоваться.

Похожие статьи